Cogging in Fermilab Booster

Evgeniy Koval, NSU

Supervisor: Kiyomi Seiya

Booster

Booster parameters

•	Diameter	150 meters
•	Injection energy	400 Mev (kine
•	Extraction energy	8 Gev (kinetio
•	Cycle time	33 msec
•	Harmonic number, h	84
•	Injection Frequency	37.77 Mhz
•	Extraction Frequency	52.81 Mhz

Typical bunch intensity......5 x 10e10

Notching

• Defined:

act of using a dedicated kicker magnet in Booster Period 5 to induce orbit distortion on the last 3 bunches in a batch of Booster beam.

- Extraction kicker risetime ≈ 40 ns.
 - ➤ Bunch-to-bunch space at the extraction≈ 20 ns
- Instead of loosing beam at 8 GeV during extraction beam is removed at 400 MeV
 - Reduces energy loss 20x times

Booster Cogging

Defined: adjusting the revolution frequency of bunched beam in a synchrotron to correspond to some external frequency

• Extraction:

- More than 2 batches needed to be extracted to Main Injector
- ➤ Batch in booster should be aligned with the Main Injector beam
- To synchronize Booster and Main Injector procedure to align notch and beam in MI – cogging – is needed.

Current state of "Notching" in Booster

Number of particles in the beam

Magnetic field

- ➤ Notching of the 1st batch is completed as soon as possible:
 - Kicker is synchronized with the beam revolution marker
 - No beam in Main Injector, cogging is not needed for the first batch
- ➤ 2nd -7th batches are notched later
 - Cogging is needed to match beam in MI with the beam being extracted from Booster
 - Notch position moves slower when completed on the higher energy (revolution time changes slower when magnetic field is bigger)

The goal of the research:

- To decrease energy loss while notching the beam in Booster
- Create notch at lower energy
- Complete cogging with dipole corrector

Task:

- 1. Get acquainted with longitudinal motion & make simulation
- 2. Understand the variation of the B field at the injection energy
 - Set up the measurement of the beam signal using wall current monitor
 - Compare experimental results with simulation
 - Calculate total bucket slippage
- 3. Estimate required B field from dipole corrector

Number of trace

Data acquisition & analisys

Time, nsec

Mountain range plot:

- External trigger starts to collect data with the set frequency
- Data array of the fixed length (10⁴ points, 0.4 nsec/point) is taken for each trigger signal
- Different traces are shown on the same plot
- <u>Revolution time</u> and corresponding <u>magnetic field</u> can be calculated while comparing distance between "gaps"

Analysis & comparison with simulation

"Gap" position at Mountain range plot

Simulation

Preliminary results

 Bucket slippage can be calculated while comparing revolution time of the real beam and simulation

Summary

- 1. Got acquainted with longitudinal motion & several simulations on it have been completed
- 2. Understand the variation of the B field at the injection energy
 - set up the measurement of the beam signal using wall current monitor
 - Compare experimental results with simulation
- 3. Estimate required B field from dipole corrector

Future plans

- Get more data sets to compare with simulation
- Calculate bucket slippage while notching on lower magnetic field values, i.e. lower energies.
- Continue with how calculated magnetic field corrections could be applied to synchronize "gap" position in Booster with existing beam in Main Injector
- To do measurement with dipole corrector